A q-Weibull Counting Process through a Fractional Differential Operator
نویسندگان
چکیده
منابع مشابه
A multivariate counting process with Weibull-distributed first-arrival times
In this paper, we study a method to construct a multivariate counting process with positive dependencies between the event occurrences. Conditional on a random effect with a positive stable distribution, the univariate counting processes are independent non-homogeneous Poisson processes with a power intensity function. The applicability of the model is illustrated in three examples: a horse rac...
متن کاملبررسی اختلال معادلات ماتریسی x+a^*f(x)a=q
در این پایان نامه ابتدا شرایط وجود جواب برای معادلات ماتریسی و غیر خطی x+a^*f(x)a=q را بررسی نموده سپس به تحلیل اختلال در معادلات مذکور می پردازیم. در هر مبحث برای بیان و توضیح مطالب قضایا و مثال های عددی متعدد آورده شده است.
q-Differential Operator Representation of the Quantum
A representation of the quantum superalgebra Uq(sl(M + 1|N + 1)) is constructed based on the q-differential operators acting on the coherent states parameterized by coordinates. These coordinates correspond to the local ones of the flag manifold. This realization provides us with a guide to construct the free field realization for the quantum affine superalgebra Uq(ŝl(M + 1|N + 1)) at arbitrary...
متن کاملA distinct numerical approach for the solution of some kind of initial value problem involving nonlinear q-fractional differential equations
The fractional calculus deals with the generalization of integration and differentiation of integer order to those ones of any order. The q-fractional differential equation usually describe the physical process imposed on the time scale set Tq. In this paper, we first propose a difference formula for discretizing the fractional q-derivative of Caputo type with order and scale index . We es...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Stochastic Analysis
سال: 2011
ISSN: 2090-3332,2090-3340
DOI: 10.1155/2011/797656